A pair of satellites map subtle variations in Earth’s gravitational field, revealing secret craters, undersea mountains, and the impact of climate change.
by Sam Flamsteed
If the Reverend Nevil Maskelyne came back to life, the 18th-century Astronomer Royal of Great Britain would probably have no trouble grasping the idea behind NASA’s remote sensing GRACE mission. Maskelyne proposed a remarkably similar experiment himself in a presentation to the Royal Society in 1772. “If the attraction of gravity be exerted, as Sir Isaac Newton supposes, not only between the large bodies of the universe, but between the minutest particles of which these bodies are composed . . . it will necessarily follow, that every hill must, by its attraction, alter the direction of gravitation in heavy bodies in its neighbourhood . . . .”
That’s exactly what GRACE, the Gravity Recovery and Climate Experiment, detects. Every 94 minutes or so, twin satellites whip once around Earth at an altitude of 310 miles, taking 30 days to cover the planet’s entire surface, then they do it again and again, sensing variations in local gravity. GRACE maps local variations in the force of gravity over Earth’s surface, revealing mountain ranges and ocean trenches as well as underground watersheds and other hidden concentrations of mass. A joint venture by NASA and the DLR (Deutsches Zentrum für Luft- und Raumfahrt, or German Aerospace Center), GRACE looks right past the familiar oceans, continents, and clouds, showing our planet in a fresh light—as a knobby, blobby globe of gravitational ups and downs.
Among other things, GRACE may have found a crater deep under the Antarctic ice that may mark an asteroid impact greater than the one that doomed the dinosaurs, measured the seafloor displacement that triggered the tsunami of 2004, and quantified changes in subsurface water in the Amazon and Congo river basins. “This is really an entirely new kind of remote sensing,” says project scientist Michael Watkins, of NASA’s Jet Propulsion Laboratory. “It’s like when radar or photography was first invented—you start realizing that it can be applied in all sorts of unanticipated ways. We’re still discovering them.”
The notion that Earth’s gravity field could be measured with satellites dates back to the dawn of the space age. In 1958 ground controllers tracking the first American satellite, Explorer 1, noted that its path faithfully traced the planet’s equatorial bulge (created by centrifugal forces generated by the planet’s rotation). By the 1960s rocket scientists realized that smaller, local variations in gravity could have further, unforeseen effects. Missiles carrying nuclear warheads, for example, could be thrown off course if no allowance was made for mountain ranges or valleys.
If Earth were a perfect sphere, perfectly uniform in density and covered to a uniform depth with ocean, the geoid—a word coined by geologists to refer to an imaginary plane located at the average level of the sea’s surface—would be a perfect sphere as well. Since the geoid would be evenly perpendicular to the pull of gravity in all places, that force would always pull you directly toward the precise center of the Earth. But Earth is nowhere near perfect or uniform, which means that gravity doesn’t always point straight down; a mountain range, for example, might divert it slightly to the left.
Understanding the subtleties of Earth’s gravitational field would be useful in many ways. Scientists could learn a lot about the structure of the planet, what it’s made of, and where the crust is thick or thin. A deposit of high-density underground rock, or an undersea mountain, is utterly invisible—yet they, too, skew the geoid away from perfect flatness. Even when the ocean is utterly calm, it isn’t flat. Measurements reveal that some parts of the ocean are a remarkable 390 feet lower than average, and others are 300 feet higher.
While scientists began to appreciate just how useful a map of the geoid could be, engineers were realizing that the most sensible way to measure the variations would be with a pair of satellites, instead of just one. A single orbiter would bob and weave with the gravity field just fine—but monitors would have to measure the ups and downs from the ground continuously by beaming radio waves back and forth. That would require an enormous network of ground stations. Yet two satellites flying far enough apart would experience different gravitational effects, so that only the distance between them must be measured. As the lead satellite approaches a place with more mass than average, it speeds up just a bit from the extra gravitational pull. Shortly thereafter, so does the second. Then, as the higher-mass region falls behind, each satellite is held back a little—again, first the leading, then the trailing satellite. By sending microwaves between the two, it would be possible to calculate that staggered acceleration, and thus infer the change in gravitational pull on Earth’s surface.